The manual does not guarantee specific individual or specific applicability of the environment, there is no express or implied warranties. Contents of this manual may not be substituted for professional medical advice. For you may encounter any problems, please consult your healthcare professional or other qualified healthcare professional advice. According to the content in this manual, you should seriously consider the healthcare professional’s advice. Insulin pump therapy method is not suitable for every patient. When decide whether to use insulin pump for the treatment, you must consult to healthcare professionals and accord to each patient’s actual situation.
Table of contents

- Introduction 3
- Manual fine-tuning 4
- Basal rate adjustment 4
- Overnight basal rate test 5
- Daytime basal rate test 7
- Evening basal rate test 9
- Carbohydrate factor adjustment 11
- Insulin sensitivity factor adjustment 13
- Note 16
In order to achieve the best insulin pump therapy, fine-tuning of insulin dose is needed. Fine-tuning of the pump includes determining your blood glucose changes and adjusts your dose settings on the basis of the basal rate.

If you do not use continuous glucose monitoring system to record blood glucose, you need to use this workbook to record and review your blood glucose levels, when clarifying your basal rate, carbohydrate intake, and large doses information. You and your healthcare professional will set the pump according to the information of the fine-tuning. Read about “Manual Fine-Tuning” section for instruction.

If you are using the same blood glucose meter and also the continuous glucose monitoring system, it’s not necessary to use this workbook. All required data are stored in glucose monitoring system and can be downloaded to your computer for reviewing. Read about “Using continuous glucose monitoring data for fine-tuning” section for details.

Fine-tuning of insulin dose can help to improve your blood glucose management. Fine-Tuning is good for:

- Stabilize blood glucose level——detect your basal rate and make adjustments to meet your body’s need for insulin when not eating.
- More accurate insulin calculation/carbohydrates ratio (carbohydrates factor) — keep the postprandial blood glucose within reasonable range.
- More precise insulin sensitivity factor calculation - delivering a more accurate amount of correctional insulin.

The TruCare insulin pump you are using have bolus wizard, which can help you synthesize the adjustment process. When you set the bolus wizard, you can calculate the bolus and the complementary bolus before meals. Meanwhile, TruCare insulin pump have bolus delivery record, it can offer a maximum of 32 recent bolus delivery record. For details read about the pump User Manual.

Before start fine-tuning, make sure you feel comfortable wearing the pump, and already mastered necessary operating method. Special efforts are required to achieve fine-tuning. Find a proper period, when you can test your blood glucose and arrange meals regularly within several days.

Read this workbook carefully. After finish this worksheet, take a break then go to next one.

Introduction

Fine-tuning of insulin includes the basal rate setting and bolus setting. This workbook includes all necessary test instructions and worksheets:

- Overnight basal rate
- Daytime basal rate
- Evening basal rate
- Carbohydrates factor(pre-meal bolus)
- Insulin sensitivity factor(correction bolus infusion)

Consult with your healthcare professional to determine when to make these adjustments. Your healthcare professional can help you when you need to adjust your pump settings.

Manual Fine-Tuning

First test your overnight basal rate. When the overnight basal rate is set correctly, dawn phenomenon could be prevented. After this, you can sequentially test daytime and evening basal rate.

The goal of basal rate adjustment is to keep blood glucose fluctuation to be within the range of 30mg/dl(1.7mmol/l). Repeat tests till your blood glucose fluctuation is well controlled. You need to be very patient to complete the process, which may take several days.

Note:
- All blood glucose test results should be recorded. Keep detailed notes so that you can reasonably assess test results.
- During this test, it is very important to maintain stability of other variables as much as possible. You need to eat the same food, and also.
- Select food which can be easily calculated the correction bolus. Do not eat high-fat food, because it will delay the glucose absorption, making it difficult to determine the correct correction dose.
- You should not engage in strenuous exercise, unless it is the exercise you perform every day.
- No illness or infection occurs.

Basal rate adjustment

First test your overnight basal rate. When the overnight basal rate is set correctly, dawn phenomenon could be prevented. After this, you can sequentially test daytime and evening basal rate.

The goal of basal rate adjustment is to keep blood glucose fluctuation to be within the range of 30mg/dl(1.7mmol/l). Repeat tests till your blood glucose fluctuation is well controlled. You need to be very patient to complete the process, which may take several days.

Note:
- All blood glucose test results should be recorded. Keep detailed notes so that you can reasonably assess test results.
- During this test, it is very important to maintain stability of other variables as much as possible. You need to eat the same food, and also.
- Select food which can be easily calculated the correction bolus. Do not eat high-fat food, because it will delay the glucose absorption, making it difficult to determine the correct correction dose.
- You should not engage in strenuous exercise, unless it is the exercise you perform every day.
- No illness or infection occurs.
Overnight basal rate test should be processed around 18:00 before dinner. Adjust the basal rate according to your blood glucose results. Use the worksheet on page 6 to complete the test. Further indications as follows:

1. Record the current basal rates and start times in the worksheet. Those data could be found in the basal rate menu of the insulin pump.
2. Test blood glucose and record the data in the first line. After your blood glucose reach the target, process the following operations.
3. Calculate and infuse your pre-meal bolus. Record your food information in 2a, 2b and 2c. Take dinner which contains a known amount of carbohydrates. If you are using the Bolus Wizard function, input the relevant information into the pump and make bolus infusion before meals.
4. Test your blood glucose 2 hours after dinner. Record the data in the 3rd line. This blood glucose should not be 50mg/dl(2.8mmol/l) more than pre-dinner blood glucose. If it is too high, stop the test and discuss with your healthcare professional about pre-meal bolus.
5. Test blood glucose before sleep and record data in the 4th line. If your blood glucose is: within the range of 100-250mg/dl(5.6-13.9mmol/l), continue the test. less than 100mg/dl(5.6mmol/l), stop the test and eat snack. above 250mg/dl(13.9mmol/l), stop the test and treat hyperglycemia.
6. Test blood glucose at 2-3 o'clock in the morning and record the data in the 5th line. If your blood glucose level is: within the range of 90 - 250mg/dl(5-13.9mmol/l), continue the test. less than 90mg/dl(5mmol/l), stop the test and eat snack. above 250mg/dl(13.9mmol/l), stop the test and treat hyperglycemia.
7. Test blood glucose when you wake up, and test every two hours until lunch time. The data should be recorded in line 6, 7 and 8. Do not eat breakfast. If your blood glucose level is: within the range of 70 - 250mg/dl(3.9-13.9mmol/l), continue test. below 70mg/dl(3.9mmol/l), stop the test and eat snack. above 250mg/dl(13.9mmol/l), stop the test and treat hyperglycemia.
8. Test your blood glucose level before lunch. The data should be recorded in line 9. Infuse pre-meal bolus and any other necessary correction bolus and eat lunch. If use Bolus Wizard function, input corresponding information and infuse pre-meal bolus.
9. If the blood glucose level is too high or too low, stop the test. Before restarting the test, please contact your healthcare professional to discuss your blood glucose situation and adjust the basal rate and carbohydrates factor. To keep your overnight basal rate stable, your healthcare professional will help you to set pump carefully. Record adjusted basal rate in the blank space after re-setting.
10. Repeat this test until your blood glucose fluctuations does not exceed 30mg/dl(1.7mmol/l). Repeat the test to verify the results.
Daytime Basal rate test

If your blood glucose reaches the target before breakfast, start the test. Purpose of test is to adjust the basal rate according to blood glucose. Complete the test according to the following instructions and the worksheet in page 8.

Bolus Wizard will help you to calculate your pre-meal bolus and correction Bolus. Read TruCare Insulin Pump User Manual for detailed instructions and information.

1. Record the current basal rate and start time in the worksheet. The data can be found in the basal rate menu of the insulin pump.
2. Test blood glucose. Record the data in the first line. Your blood glucose must reach the target and continue with the following operations.
3. Calculate and infuse your pre-meal bolus. Record your food information in 2a, 2b and 2c line. Eat breakfast which contains a known amount of carbohydrates. If you are using the Bolus Wizard function, input the relevant information into the pump and make bolus infusion before meals.
4. Test your blood glucose 2 hours after breakfast. Record the data in the 3rd line. This blood glucose should not be 50mg/dl(2.8mmol/l) more than pre-dinner blood glucose. If it is too high, stop the test and discuss with your healthcare professional about pre-meal bolus.
5. Test blood glucose before lunch and record data in the 4th line. Do not eat lunch. If your blood glucose is:
 - within the range of 70-250mg/dl(3.9-13.9mmol/l), continue the test.
 - less than 70mg/dl(3.9mmol/l), stop the test and treat hypoglycemia.
 - above 250mg/dl(13.9mmol/l), stop the test and treat hyperglycemia.
6. Test blood glucose every two hours until dinner time and record data in line 5, 6 and 7. If your blood glucose level is:
 - within the range of 70 - 250mg/dl(3.9-13.9mmol/l), continue test.
 - below 70mg/dl(3.9mmol/l), stop the test and treat hypoglycemia.
 - above 250mg/dl(13.9mmol/l), stop the test and treat hyperglycemia.
7. Test your blood glucose level before dinner. Infuse pre-dinner any other necessary correction bolus. The data should be recorded in line 8. Eat dinner. If you are using the Bolus Wizard function, input corresponding information and infuse pre-meal bolus.
8. If the blood glucose level is too high or too low, stop the test. Before restarting the test, please contact your healthcare professional to discuss your blood glucose situation and adjust the basal rate and carbohydrates factor. To keep your overnight basal rate stable, your healthcare professional will help you to set pump carefully. Record adjusted basal rate in the blank space after re-setting.
9. Repeat this test until your blood glucose fluctuations does not exceed 30mg/dl(1.7mmol/l). Repeat the test to verify the results.

Test Your Daytime Basal Rate Worksheet

<table>
<thead>
<tr>
<th>Test</th>
<th>BEFORE BREAKFAST</th>
<th>USING CARBOHYDRATE FACTOR</th>
<th>CARBOHYDRATE INTAKE</th>
<th>PRE-meal bolus</th>
<th>2 HOURS AFTER BREAKFAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test1</td>
<td>Within target? Continue the test.</td>
<td>0 carbohydrate of one unit insulin(exchange portion)</td>
<td>(gram or exchange portion)</td>
<td></td>
<td>Over 50mg/dl higher than pre-breakfast blood glucose? Stop test. Start test again tomorrow with an adjusted breakfast bolus.</td>
</tr>
<tr>
<td>Test2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do not eat lunch!</th>
<th>Lunch time</th>
<th>2h after lunch</th>
<th>4h after lunch</th>
<th>6h after lunch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 70mg/dl? Treat low and stop test. Start test again tomorrow with an adjusted basal rate. Over 250mg/dl? Stop test. Follow high blood glucose guidelines. Start test again tomorrow with an adjusted basal rate.</td>
<td>Lunch time</td>
<td>2h after lunch</td>
<td>4h after lunch</td>
<td>6h after lunch</td>
</tr>
</tbody>
</table>

Basal rate

<table>
<thead>
<tr>
<th>Basal rate</th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Test4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start time</td>
<td>#1:12:00(midnight)</td>
<td>#2:</td>
<td>#3:</td>
<td>#4:</td>
</tr>
</tbody>
</table>

DINNER TIME
Eat dinner and take dinner bolus and any necessary correction bolus.

Basal Rate

<table>
<thead>
<tr>
<th>Basal Rate</th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Test4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1:12:00(midnight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evening Basal rate test

Start the test after making sure your blood glucose reaches the target before lunch. Purpose of test is to adjust the basal rate according to blood glucose.

1. Record the current basal rate and start time in the worksheet. The data can be found in the basal rate menu of the insulin pump.

2. Test blood glucose. Record the data in the first line. Your blood glucose must reach the target and continue with the following operation.

3. Calculate and infuse your pre-meal bolus. Record your food information in 2a, 2b and 2c line. Eat lunch which contains a known amount of carbohydrates. If you use Bolus Wizard function, input the relevant information into the pump and make bolus infusion before meals.

4. Test your blood glucose 2 hours after lunch. Record the data in the 3rd line. This blood glucose should not be 50mg/dl(2.8mmol/l) more than pre-dinner blood glucose. If it is too high, stop the test and discuss with your healthcare professional about pre-meal bolus.

5. Test blood glucose before dinner. Do not eat dinner. The data should be recorded in the 4th line. If your blood glucose is:
 - In the range of 70-250mg/dl(3.9-13.9mmol/l), continue the test.
 - Less than 70mg/dl(3.9mmol/l), stop the test and treat hypoglycemia.
 - Above 250mg/dl(13.9mmol/l), stop the test and treat hyperglycemia.

6. Test every two hours until bedtime. The data should be recorded in line 5, 6 and 7. If your blood glucose level is:
 - In the range of 70 - 250mg/dl(3.9-13.9mmol/l), continue test.
 - Below 70mg/dl(3.9mmol/l), stop test and treat hypoglycemia.
 - Above 250mg/dl(13.9mmol/l), stop test and treat hyperglycemia.

7. Test your blood glucose level before bedtime. The data should be recorded in line 8. If you want to have snack, infuse snack bolus and necessary correction bolus. If you are using the Bolus Wizard, input corresponding bolus guide information and infuse snack bolus.

8. If the blood glucose level is too high or too low, stop test. Before restarting the test, please contact your healthcare professional to discuss your blood glucose situation and adjust the basal rate and carbohydrates factor. To keep your overnight basal rate stable, your healthcare professional will begin with fine-tuning. Record adjusted basal rate in the blank space.

9. Repeat this test until your blood glucose fluctuations does not exceed 30mg/dl(1.7mmol/l). Repeat the test to verify the results.

Test Your Evening Basal Rate Worksheet

<table>
<thead>
<tr>
<th>Test</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mmol/l]</td>
<td>[mmol/l]</td>
<td>[mmol/l]</td>
<td>[mmol/l]</td>
</tr>
<tr>
<td>BEFORE LUNCH</td>
<td>Within target? Continue the test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>USING CARBOHYDRATE FACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>CARBOHYDRATE INTAKE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>Pre-meal bolus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 HOURS AFTER LUNCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dinner Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Do not eat dinner!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bedtime</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basal Rate

<table>
<thead>
<tr>
<th>Test</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mmol/l]</td>
<td>[mmol/l]</td>
<td>[mmol/l]</td>
<td>[mmol/l]</td>
</tr>
<tr>
<td>Start Time</td>
<td>Basal Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1:12:00(midnight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Carbohydrates factor adjustment

The ratio of insulin and carbohydrates (Carb Ratio) is used to calculate your pre-meal bolus. If you are using the Bolus Wizard, it is a necessary parameter. This represents the amount of carbohydrates consumed by one unit insulin. Accurate carbohydrate factor will greatly improve your blood glucose levels. Even though you are controlling blood glucose by calculating the amount of carbohydrates, the carbohydrates factor you are using may not be the most accurate.

Carbohydrates factor test is required before meal. Operate according to the following instructions and your test results should be recorded in the worksheet of page 13.

When doing the test, you need to make sure:
- your blood glucose reach the target.
- no illness, infection and blood glucose increase.
- in the past 24 hours, you didn't engage in strenuous exercise, unless such exercise is your daily exercise.

Tip: Record all blood glucose data and kept detailed notes, so your healthcare professional can reasonably evaluate the test results.

1. Test your blood glucose. The data should be recorded in the 2nd line. Your Blood glucose must reach the target before continuing the test.

2. Calculate and infusion your pre-meal bolus. Record you food information in line 3a, 3b and 3c. Eat meal which contains a known amount of carbohydrates. If you are using the Bolus Wizard, input corresponding information and infuse pre-meal bolus. If you are not using Bolus Wizard, according to your healthcare professional recommended carbohydrate factor to calculate your Bolus before meals.

3. Test blood glucose 2 hours after the meal. The data should be recorded in line 4. Compare blood glucose with pre-meal blood glucose. The fluctuations of your blood glucose after meal should not exceed 50mg/dl(2.8mmol/l) compared with blood glucose before meals. Compare with pre-meal blood glucose, if your blood glucose is 50mg/dl(2.8mmol/l) higher than pre-meal blood glucose, the carbohydrates factor is probably too high. In both cases, you should stop test. And discuss with your healthcare professional about the test results, may recommend you to use a different carbohydrate factor.

4. Test blood glucose 3 hours after the meal. The data should be recorded in line 5. Your blood glucose should decline. If the Blood glucose reduced to less than 70mg/dl(3.9mmol/l), treat hypoglycemia and stop test.

5. Test blood glucose 4 hours after the meal. The data should be recorded in line 6. Your blood glucose fluctuations should not exceed 30mg/dl(1.7mmol/l) compared with pre-meal blood glucose.

6. Repeat this test four hours after the meal(line 6), the fluctuations of your blood glucose should not exceed 30mg/dl(1.7mmol/l) compared with pre-meal blood glucose. Repeat test to verify the results.

Carbohydrates factor adjustment

Tip: Unless your basal rate of different time in a day changed a lot, your daily carbohydrate factor should be same every day. If your basal rate changes, it is best to do this test when the basal rate is different to find out the most suitable carbohydrate factors in these periods. Pump’s w function allows us to easily use different carbohydrate factors to estimate bolus.

For example: Use carbohydrates factor 15(1 unit insulin for 15 grams carbohydrates), test your blood glucose and infuse pre-meal bolus. Your blood glucose after 2 hours is 50mg/dl(2.8mmol/l) higher than pre-meal blood glucose. This means that your carbohydrate factor is too high and should also be reduced. One unit of insulin is not enough for 15 gram carbohydrate. The next day, repeat the test with carbohydrate factor 13 or 14. Similarly, if the blood glucose 2 hours after meal is just 20mg/dl(1.1mmol/l) or less higher than pre-meal blood glucose. This means that your carbohydrate factor is too low and should be increased. One unit of insulin is enough for 15 grams carbohydrates. The next day, repeat the test with carbohydrates factor 16 or 17.
Insulin sensitivity factor adjustment

Use your insulin sensitivity factor (also called correction infusion factor) to calculate the insulin of your correction bolus. The factor means the decreased blood glucose by one unit insulin, glucose unit should be presented in mg/dl or mmol/l. This is the parameter required when using Bolus Wizard. Fine-tune your insulin sensitivity factor helps estimate more accurate correction bolus when blood glucose is rising.

Test your insulin sensitivity factor according to following steps, and use the worksheets in page 15.

When doing the test, you need to make sure:
- Your blood glucose is at least 50 mg/dl(2.8mmol/l) higher than your target range.
- You have not infused bolus for the past four hours.
- No food intake for the past four hours.
- You will not eat for the next 4 hours after.
- In the past 24 hours, you do not engage in strenuous exercise, unless it is your daily exercise.
- Your blood glucose is not increased because of illness or infection.

Tip: Record all blood glucose results and keep detailed notes, so your healthcare professional can reasonably evaluate the test result.

1. Input upper limit and lower limit of your target blood glucose of in line one.
2. Test your blood glucose and record in line 2. Your Blood glucose must be at least 50mg/dl(2.8mmol/l) higher than the blood glucose in line 1.
3. Calculate and infuse your correction bolus. Input relevant information in line 3a, 3b and 3c.
 - When the pump gets your blood glucose, Bolus Wizard will calculates the correction bolus.
 - If you do not use the Bolus Wizard, use the insulin sensitivity factors (Rule 1700) provided by your professional to calculate your correction bolus.
4. Test your blood glucose again two and three hours after correction bolus infusion. Record the result in line 4 and 5. Your blood glucose should decline. If during the test the blood glucose reduced to 70mg/dl(3.9mmol/l) or below, treat hypoglycemia and stop test. Consult your healthcare professional about insulin sensitivity factor.
5. Test your blood glucose four hours after correction bolus infusion. Record the result in line 6. Compare the blood glucose with the blood glucose in line 2. If the Blood glucose fluctuations is: within 30mg/dl(1.7mmol/l) range, your insulin sensitivity factor is probably correct. higher than 30mg/dl(1.7mmol/l), decrease insulin sensitivity factor and test again. below 30mg/dl(1.7mmol/l) or less, increase insulin sensitivity factor and test again.
6. Repeat this test until your blood glucose(line 6) fluctuations do not exceed 30mg/dl(1.7mmol/l) within 4 hours. Test again to verify the test results.

Tip: If your basal rate changes, it is best to test when your basal rate is different to find out the insulin sensitivity factor for these periods.

<table>
<thead>
<tr>
<th>Test Your Insulin Sensitivity Factor Worksheet</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET BLOOD GLUCOSE RANGE
(upper limit and lower limit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEGINNING BLOOD GLUCOSE
In order to continue test, the blood glucose should be
50mg/dl(2.8mmol/l) higher than 1st line.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a Exceeding target blood glucose :
(line 2—line 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b Using insulin sensitivity factors
(1.0 units insulin lower ____mmol/l blood glucose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c Correction Bolus :
Calculate and infuse correction Bolus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Insulin Sensitivity Factor Adjustment | | | | |
|--------------------------------------|--------|--------|--------|
| **7** Beginning Blood glucose (2nd line) | | | | |
| **4h After Blood glucose (6th line)** | | | | |
| **7a** Compare blood glucose(7th line) and record the difference: | | | | |
| **7b** Is the difference(7th line) below 30mg/dl(1.7mmol/l) or lower? | Yes | Yes | Yes | Yes |
| **7c** If not, record new insulin sensitivity factor
Yes, you do not need to adjust.
(1.0 units of insulin reduces ____mmol/l glucose) | No | No | No | No |
Note